
B3:	MongoDB	and	Node	 1	

COM644	Full-Stack	Web	and	App	Development	
	

Practical	B3:	MongoDB	and	Node	
	
	

Aims	
• To	introduce	the	MongoDB	driver	for	Node	applications	
• To	illustrate	creation	of	a	reusable	database	connection	
• To	demonstrate	how	to	access	the	database	connection	from	Express	

controllers	
• To	demonstrate	the	rretrieval	of	multiple	documents	from	a	collection	
• To	restrict	retrieval	to	a	subset	of	documents	
• To	return	a	single	document	identified	by	its	_id	value	
• To	demonstrate	the	insertOne()	method	for	adding	documents	to	a	

collection	
	

Contents	
B3.1	MAKING	A	DATABASE	CONNECTION	...	2	

B3.1.1	INSTALLING	THE	MONGODB	DRIVER	...	2	
B3.1.2	CREATING	A	REUSABLE	CONNECTION	...	3	
B3.1.3	ACCESSING	THE	CONNECTION	FROM	CONTROLLERS	..	6	

B3.2	QUERYING	THE	DATABASE	FROM	NODE.JS	...	7	
B3.2.1	RETURNING	MULTIPLE	DOCUMENTS	FROM	A	COLLECTION	...	7	
B3.2.2	RETURNING	A	SUBSET	OF	THE	DATA	..	9	
B3.2.2	RETURNING	A	SINGLE	DOCUMENT	BY	ID	..	10	

B3.3	ADDING	DOCUMENTS	TO	A	COLLECTION	..	11	
B3.3.1	VALIDATING	THE	DATA	..	11	
B3.3.2	CHECKING	THE	DATA	FORMAT	..	12	
B3.3.3	INSERTING	THE	DOCUMENT	...	12	

	
	
	
	 	

B3:	MongoDB	and	Node	 2	

B3.1	Making	a	database	connection		
	
In	this	section,	we	will	revisit	the	application	that	we	began	to	build	in	Section	A	and	
investigate	how	to	connect	it	to	the	MongoDB	database,	instead	of	the	static	JSON	file.		The	
starting	point	for	this	section	is	the	state	of	the	application	at	the	end	of	Practical	A6	and	
the	database	established	in	Weekly	Challenge	4,	so	you	should	make	sure	that	you	have	
completed	everything	up	to	this	point	before	you	begin.	
	
When	we	run	the	MongoDB	server	by	the	mongod	command,	we	can	see,	as	illustrated	in	
Figure	B3.1	below,	that	the	server	listens	for	requests	on	port	27017.		We	will	add	code	to	
our	application	to	generate	a	connection	to	the	database	on	this	port,	issue	requests	and	
process	the	data	returned.	
	
	

	
	

Figure	B3.1	MongoDB	server	listening	on	port	27017	
	
	
B3.1.1	Installing	the	MongoDB	driver	
	
First,	we	need	to	install	the	native	MongoDB	driver	into	our	application	by	the	command	
	

U:\>	npm	install	mongodb	--save	
	
	

B3:	MongoDB	and	Node	 3	

	
	

Figure	B3.2	Install	the	Mongodb	package	
	
	
	
B3.1.2	Creating	a	reusable	connection	
	
In	our	MEAN	application,	we	need	to	create	a	file	to	manage	our	database	connection.		This	
file	can	be	placed	anywhere	in	our	structure,	but	the	most	appropriate	location	would	be	to	
use	the	data	folder	previously	created	as	a	sub-folder	of	api.	
	
The	database	connection	code	will	be	a	Node	module	that	exposes	two	methods	–	one	to	
open	the	connection	and	another	to	retrieve	it.		The	code	for	this	module	is	illustrated	in	the	
code	box	overleaf.	
	
Here,	we	require	the	class	from	the	MongoDB	package	that	manages	connections.		We	
could	simply	require	the	entire	package,	but	it	is	more	efficient	to	explicitly	specify	a	class	
by	name	if	that	is	the	only	element	in	the	package	that	we	will	need.	
	
Next,	we	provide	the	connection	string	for	the	database.		This	consists	of	the	protocol	
(mongodb://)	followed	by	the	machine	address	and	port	(localhost:27017)	and	finally	the	
database	to	connect	to	(businessDB).	
	
Finally,	in	the	initialisation	section,	we	create	a	local	variable	dbURL	that	will	hold	the	
connection	object.	
	 	

B3:	MongoDB	and	Node	 4	

	
File:	B3/api/data/dbConnect.js	
	

var MongoClient = require('mongodb').MongoClient;
var dbURL = 'mongodb://localhost:27017/businessDB';

var connection = null;

module.exports.open = function() {
 MongoClient.connect(dbURL, function(err, db) {
 if (err) {
 console.log("DB connection failed");
 return;
 }
 connection = db;
 console.log("DB connection open");
 })
}

module.exports.get = function() {
 return connection;
}	

	
	
	
To	create	the	connection,	we	use	the	MongoClient	method	connect()	which	requires	two	
parameters	–	the	connection	string	defined	earlier	and	a	callback	function	that	will	run	
when	the	connect()	operation	is	complete.		The	callback	function	accepts	two	parameters	
–	an	error	object	(err)	that	will	be	populated	if	the	connection	request	fails	and	a	
connection	object	(db)	that	will	be	populated	if	the	request	succeeds.		The	body	of	the	
callback	function	then	checks	for	the	presence	of	the	error	object,	generating	an	
appropriate	Console	message	if	it	exists	–	otherwise	the	local	connection	variable	is	set	
with	the	new	connection	object.	
	
This	connection	variable	is	then	simply	returned	by	the	get()	method	when	a	request	
for	the	connection	is	made.	
	
Now,	we	will	use	this	connection	management	module	to	create	a	new	database	connection	
as	soon	as	the	application	begins.	
	
The	can	be	easily	achieved	by	adding	a	line	at	the	top	of	app.js	to	require	the	connection	
manager	module	and	immediately	invoke	the	open()	method.	
	
	
	
	
	
	
	
	

B3:	MongoDB	and	Node	 5	

	
	
File:	B3/app.js	
	

require('./api/data/dbConnect.js').open();
var express = require('express');
var app = express();
var path = require('path');
var bodyParser = require('body-parser');
...	

	
	
Now,	when	we	start	the	application	server,	we	can	see	the	Console	message	confirming	that	
the	database	connection	has	been	successfully	opened.	
	
	
	

	
	

Figure	B3.3	Database	connection	established	
	
	
	
Try	it	now!	
	
Verify	the	error	trapping	in	the	callback	function	in	the	dbConnect	open()	method	by	
changing	the	port	number	in	the	database	connection	string.	When	you	restart	the	server,	
you	should	find	that	the	connection	request	fails	and	that	you	see	the	“DB	connection	
failed”	message	in	the	Console	window.	
	
Remember	to	restore	the	original	port	number	before	continuing!	
	
	

B3:	MongoDB	and	Node	 6	

B3.1.3	Accessing	the	connection	from	controllers	
	
Now	that	we	have	a	database	connection	available,	we	want	to	update	our	controllers	so	
that	they	are	able	to	make	use	of	it.	
	
First	we	require	the	connection	management	package	into	the	controllers	file	and	then	add	
code	into	the	businessesGetAll	controller	to	retrieve	the	currently	open	connection	
(opened	by	app.js	when	the	application	was	started).	
	
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

var dbConnect = require('../data/dbConnect.js');
var businesses_data = require('../data/data_100.json');

module.exports.businessesGetAll = function(req, res) {

 var db = dbConnect.get();
 console.log("db", db);
...	

	
	
	
Now,	load	http://localhost:3000/api/businesses	into	a	web	browser.		The	browser	will	
display	the	same	data	as	previously	(as	the	controller	is	still	fetching	the	data	from	the	static	
JSON	file),	but	you	will	see	new	information	in	the	Console	window	where	we	have	output	
the	contents	of	the	database	connection	object.			This	is	shown	in	Figure	B3.4	below.	
	
	

	
	

Figure	B3.4	Controller	fetches	database	connection	

B3:	MongoDB	and	Node	 7	

Now	that	we	are	confident	the	connection	is	being	retrieved	in	the	businessesGetAll	
controller,	we	will	do	the	same	for	the	other	controllers	in	the	file	(at	the	same	time	
removing	the	console.log()	that	displays	the	connection	information).	
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {
 var db = dbConnect.get();
 ...

module.exports.businessesGetOne = function(req, res) {
 var db = dbConnect.get();
 ...

module.exports.businessesAddOne = function(req, res) {
 var db = dbConnect.get();
 ...
	

	
	
	

B3.2	Querying	the	database	from	Node.js		
	
Now	that	a	reusable	database	connection	has	been	created,	we	can	use	it	to	update	our	
existing	controllers	so	that	they	operate	on	the	live	database	rather	than	the	static	file	
data_100.json	
	
	
B3.2.1	Returning	multiple	documents	from	a	collection	
	
We	have	previously	seen	how	the	find()	method	can	be	used	in	the	MongoDB	shell	to	
return	documents	from	a	collection.		In	Javascript	we	have	a	similar	technique	–	except	that	
we	need	to	consider	two	additional	things	
	

i) The	find()	method	does	not	return	documents,	but	a	cursor	that	can	be	used	
to	retrieve	documents	
	

ii) The	find()	method	is	synchronous	–	i.e.	it	is	blocking	in	nature.	
	
Fortunately,	there	is	a	method	toArray()	that	solves	both	these	problems.		toArray()	
will	retrieve	data	from	a	cursor	and	return	it	in	array	form,	and	it	is	also	asynchronous	–	i.e.	
it	accepts	a	callback	function	that	will	be	called	when	the	toArray()	operation	is	
complete.	
	

B3:	MongoDB	and	Node	 8	

The	following	code	box	illustrates	how	we	can	modify	the	businessesGetAll	controller	to	
retrieve	data	from	the	database	rather	than	the	static	JSON	file.	
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');
 collection
 .find()
 .toArray(function(err, docs) {
 console.log("Retrieved the businesses");
 res
 .status(200)
 .json(docs);
 })
};	

	
	
Here,	we	retrieve	the	database	connection	and	use	the	collection()	method	on	the	
connection	to	return	a	pointer	to	the	business	collection	that	contains	our	data.		Next,	we	
chain	the	find()	method	and	the	toArray()	method	to	the	collection,	providing	to	
toArray()	a	callback	function	that	returns	the	HTTP	response	object	with	a	status	code	
of	200	and	the	data	retrieved	from	the	database.		Figure	B3.5	illustrates	the	data	retrieved	
from	the	database	and	displayed	in	the	browser.	
	
	

	
	

Figure	B3.5	Retrieving	data	from	the	database	

B3:	MongoDB	and	Node	 9	

B3.2.2	Returning	a	subset	of	the	data	
	
In	the	previous	version	of	businessesGetAll,	we	had	a	pair	of	optional	querystring	
parameters	(start	and	number)	that	enabled	us	to	control	which	portion	of	the	collection	
was	returned.		Now	that	we	have	connected	the	database	to	the	controller,	we	want	to	re-
instate	that	additional	functionality.	
	
The	purpose	of	the	variables	was	to	specify	how	many	values	to	return	and	the	starting	
point	in	the	collection	from	which	we	want	to	extract	results.		The	MongoDB	driver	has	a	
method	that	handles	each	of	these	as	follows	
	

• skip()	takes	an	integer	parameter	that	specifies	how	many	documents	to	skip	over	
before	returning	results	

• limit()	takes	an	integer	parameter	that	specifies	the	maximum	number	of	
documents	to	be	returned	

	
These	methods	can	be	simply	chained	to	the	find()	method	as	shown	in	the	following	
code	box,	which	also	re-instates	the	previous	code	to	retrieve	the	optional	parameters	from	
the	querystring.	
	
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');

 var start = 0;
 var number = 0;

 if (req.query && req.query.start) {
 start = parseInt(req.query.start);
 }
 if (req.query && req.query.number) {
 number = parseInt(req.query.number);
 }
 collection
 .find()
 .skip(start)
 .limit(number)
 .toArray(function(err, docs) {
 console.log("Retrieved the businesses");
 res
 .status(200)
 .json(docs);
 })
};	

B3:	MongoDB	and	Node	 10	

B3.2.2	Returning	a	single	document	by	ID	
	
Searching	for	a	single	document	could	be	achieved	by	passing	a	query	object	to	the	find()	
method	and	using	the	same	technique	as	above,	but	the	MondoDB	driver	provides	a	
separate	method	which	is	a	more	convenient	way	of	returning	a	single	document.	
	
The	method	findOne()	is	presented	in	the	code	box	below.	It	accepts	two	parameters,	a	
query	object	specifying	the	search	term	and	a	callback	function	with	the	usual	error	and	
document	objects.	
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

module.exports.businessesGetOne = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');
 var businessID = req.params.businessID;
 console.log("GET business " + businessID);
 collection
 .findOne({_id : ObjectId(businessID)},

 function(err, doc) {
 res
 .status(200)
 .json(doc);
 })
};	

	
	
Note	the	format	of	the	query	object	passed	to	the	findOne()	method.		This	uses	the	
MongoDB	driver	method	ObjectID()	that	allows	us	to	treat	MongoDB	_id	values	as	valid	
JavaScript.		In	order	to	use	this	method,	we	need	to	require	it,	so	we	need	to	add	the	
following	highlighted	line	to	the	top	of	our	controllers	file.		
	
	

	
File:	B3/app/controllers/businesses.controllers.js	
	

var dbConnect = require('../data/dbConnect.js');
var ObjectId = require('mongodb').ObjectId;
//var businesses_data = require('../data/data_100.json');	

	
	
Note	that	we	can	also	now	remove	the	reference	to	the	data_100.json	file	as	all	of	our	data	
retrieval	is	being	satisfied	by	the	database.	
	

B3:	MongoDB	and	Node	 11	

We	can	verify	the	operation	of	this	controller	by	presenting	a	single	_id	to	the	rouoter	as	
illustrated	in	Figure	B3.6	which	demonstrates	the	URL	
http://localhost:3000/api/businesses/589ddf35f3ff092e206f04ea	
	
	
	

	
	

Figure	B3.6	Retrieving	a	single	document	by	ID	
	
	
	

B3.3	Adding	documents	to	a	collection		
	
Adding	a	new	document	to	a	MongoDB	collection	is	a	three-stage	process,	requiring	
validation,	data	formatting	and	document	insertion.	
	
	
B3.3.1	Validating	the	data	
	
Initially,	we	need	to	validate	that	all	of	the	data	values	that	are	required	are	present.		
Remember	that	JSON	does	NOT	require	that	all	documents	have	the	same	structure,	so	
MongoDB	will	accept	an	incomplete	document	even	if	is	not	valid	in	the	context	of	your	
application.	
	
In	our	example,	we	will	assume	that	the	only	compulsory	fields	are	“name”	and	“stars”	and	
so	we	will	check	that	the	body	element	of	the	HTTP	request	exists	and	that	it	contains	
.name	and	.stars	items.	
	
	

B3:	MongoDB	and	Node	 12	

if (req.body && req.body.name && req.body.stars) {
	
	
	
B3.3.2	Checking	the	data	format	
	
Next,	we	will	ensure	that	the	data	is	formatted	as	we	would	like.		The	name	of	a	business	is	
a	simple	text	value,	but	if	you	examine	the	stars	element	of	any	document	in	the	database	
you	will	find	that	it	is	stored	as	an	integer.			Again,	MongoDB	will	happily	accept	non-integer	
values	for	the	stars	item,	but	so	that	we	can	use	the	values	properly	in	comparisons,	we	will	
use	parseInt()	to	ensure	that	the	value	we	present	to	the	database	is	an	integer.	
	
	

 var newBusiness = req.body;
 newBusiness.stars = parseInt(req.body.stars);

	
	
	
B3.3.3	Inserting	the	document	
	
Finally,	we	can	add	the	new	document	to	the	collection	by	using	the	MongoDB	
insertOne() method.		This	takes	two	parameters	–	the	new	document	to	be	added	as	a	
JSON	object,	and	a	callback	function	that	runs	once	the	insert	has	been	completed.		The	
callback	function	takes	the	usual	two	parameters	representing	an	error	object	if	the	request	
is	not	completed	and	a	response	object	returned	from	the	MongoDB	server.	
	
	

 collection
 .insertOne(newBusiness, function(err, response){
 ...
 });

	
	
	
The	following	code	box	presents	the	full	businessesAddOne	controller.		Note	that	we	have	
included	error	trapping	on	the	data	validation	test	to	return	an	error	message	to	the	console	
and	an	HTTP	400	“Bad	request”	code	if	all	of	the	required	data	is	not	present.		Note	also	
how	the	response	object	returned	by	the	insertOne()	callback	function	(not	to	be	
confused	with	the	HTTP	response	object	in	the	controller	parameter	res)	contains	a	large	
collection	of	information,	but	we	can	obtain	the	document	that	has	been	added	by	logging	
its	ops	property	to	the	console.	
	
	
	
	
	

B3:	MongoDB	and	Node	 13	

	
File:	B3/app/controllers/businesses.controllers.js	
	

module.exports.businessesAddOne = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');
 console.log("POST new business");

 if (req.body && req.body.name && req.body.stars) {
 var newBusiness = req.body;
 newBusiness.stars = parseInt(req.body.stars);
 collection
 .insertOne(newBusiness, function(err, response){
 console.log(response)
 res
 .status(201)
 .json(response.ops)
 });
 } else {
 console.log("Data missing from body");
 res
 .status(400)
 .json({message : "Required data missing"});
 }
};	

	
	
	
As	usual,	we	can	test	the	operation	of	the	POST	request	by	using	the	Postman	app.		Figure	
B3.7	below	illustrates	a	POST	request	made	to	http://localhost:3000/api/businesses/new	
with	data	values	name	and	stars	provided	with	sample	values.		See	in	the	response	to	the	
request	that	the	value	for	stars	is	confirmed	as	an	integer	and	that	MongoDB	has	generated	
an	_id	value	for	the	new	document.		
	
	
	
	
	
	
	
	
	
	
	
	
	

B3:	MongoDB	and	Node	 14	

	
	

Figure	B3.7	Adding	a	new	business	
	
	
	
We	can	also	confirm	the	operation	of	the	new	controller	by	observing	the	output	generated	
in	the	Console	window	and	shown	in	Figure	B3.8.	
	
	
	

	
	

Figure	B3.8	New	document	added	
	
	
Finally,	we	can	verify	that	the	new	document	has	been	added	by	retrieving	it	using	the	
businessesGetOne	method	and	providing	the	newly	created	_id	in	the	URL.		Figure	B3.9	
illustrates	the	the	page	returned	by	the	URL		

B3:	MongoDB	and	Node	 15	

http://localhost:3000/api/businesses/58ac3bea8d57fe3caed993ad.	(Remember	that	your	
new	_id	value	will	be	different)	
	
	
	

	
	

B3.9	Retrieving	the	new	document	

